Compare commits

..

2 Commits

Author SHA1 Message Date
ray
6337567ddf Merge remote-tracking branch 'origin/ui' into ui 2025-11-04 14:47:38 +08:00
ray
d0e74f49d0 测试文件提交 2025-11-04 14:47:28 +08:00
2 changed files with 281 additions and 1 deletions

View File

@@ -161,6 +161,9 @@ def yolo_shibie(im_PIL, detections, model, enhance_enabled=False, enhance_params
# ✅ 提取检测信息
if result.boxes is not None and len(result.boxes.xyxy) > 0:
# 用于存储多个候选npc4如果检测到多个
npc4_candidates = []
for i in range(len(result.boxes.xyxy)):
try:
left = float(result.boxes.xyxy[i][0])
@@ -170,10 +173,36 @@ def yolo_shibie(im_PIL, detections, model, enhance_enabled=False, enhance_params
cls_id = int(result.boxes.cls[i])
label = result.names[cls_id]
if label in ['center', 'next', 'npc1', 'npc2', 'npc3', 'npc4', 'boss', 'zhaozi']:
# 获取置信度(如果可用)
confidence = float(result.boxes.conf[i]) if hasattr(result.boxes, 'conf') and len(result.boxes.conf) > i else 1.0
# npc1-npc4 使用底部位置与main.py保持一致
if label in ['npc1', 'npc2', 'npc3', 'npc4']:
player_x = int(left + (right - left) / 2)
player_y = int(bottom) + 30 # 使用底部位置与main.py保持一致
position = [player_x, player_y]
# 特殊处理npc4如果检测到多个收集所有候选
if label == 'npc4':
npc4_candidates.append({
'position': position,
'confidence': confidence,
'box': [left, top, right, bottom],
'area': (right - left) * (bottom - top) # 检测框面积
})
else:
# npc1-npc3直接赋值如果已经有值保留置信度更高的
if detections[label] is None or (hasattr(result.boxes, 'conf') and
confidence > 0.5):
detections[label] = position
# 其他目标使用中心点
elif label in ['center', 'next', 'boss', 'zhaozi']:
player_x = int(left + (right - left) / 2) + 3
player_y = int(top + (bottom - top) / 2) + 40
detections[label] = [player_x, player_y]
# 道具和怪物可以多个
elif label in ['daojv', 'gw']:
player_x = int(left + (right - left) / 2) + 3
player_y = int(top + (bottom - top) / 2) + 40
@@ -181,10 +210,35 @@ def yolo_shibie(im_PIL, detections, model, enhance_enabled=False, enhance_params
if label not in detections:
detections[label] = []
detections[label].append([player_x, player_y])
except Exception as e:
print(f"⚠️ 处理检测框时出错: {e}")
continue
# 处理npc4如果检测到多个选择最合适的
if npc4_candidates:
# 按置信度排序,选择置信度最高的
npc4_candidates.sort(key=lambda x: x['confidence'], reverse=True)
# 选择最佳候选(置信度最高且面积合理)
best_npc4 = None
for candidate in npc4_candidates:
# 置信度阈值至少0.3(可根据实际情况调整)
if candidate['confidence'] >= 0.3:
# 检查检测框面积是否合理(避免过小的误检)
area = candidate['area']
if area > 100: # 最小面积阈值
best_npc4 = candidate
break
if best_npc4:
detections['npc4'] = best_npc4['position']
# 可选:输出调试信息
# print(f"✅ 检测到npc4: 位置={best_npc4['position']}, 置信度={best_npc4['confidence']:.2f}")
elif len(npc4_candidates) == 1:
# 如果只有一个候选,即使置信度较低也使用
detections['npc4'] = npc4_candidates[0]['position']
except Exception as e:
print(f"⚠️ YOLO检测出错: {e}")

226
yolotest2.py Normal file
View File

@@ -0,0 +1,226 @@
"""
从main.py提取的YOLO识别测试文件
使用与main.py相同的识别逻辑
"""
import cv2
from utils.get_image import GetImage
from ultralytics import YOLO
from config import config_manager
import os
# 检查模型文件是否存在
model_path = r"best.pt"
model0_path = r"best0.pt"
if not os.path.exists(model_path):
print(f"❌ 模型文件不存在: {model_path}")
exit(1)
if not os.path.exists(model0_path):
print(f"❌ 模型文件不存在: {model0_path}")
exit(1)
# 加载YOLO模型与main.py保持一致
try:
model = YOLO(model_path).to('cuda')
model0 = YOLO(model0_path).to('cuda')
print(f"✅ 模型加载成功: {model_path}")
print(f"✅ 模型加载成功: {model0_path}")
except Exception as e:
print(f"❌ 模型加载失败: {e}")
exit(1)
def yolo_shibie(im_PIL, detections, model):
"""
YOLO识别函数与main.py中的实现完全一致
:param im_PIL: PIL图像对象
:param detections: 检测结果字典
:param model: YOLO模型
:return: 更新后的detections字典
"""
results = model(im_PIL) # 目标检测
for result in results:
for i in range(len(result.boxes.xyxy)):
left, top, right, bottom = result.boxes.xyxy[i]
scalar_tensor = result.boxes.cls[i]
value = scalar_tensor.item()
label = result.names[int(value)]
if label == 'center' or label == 'next' or label == 'boss' or label == 'zhaozi':
player_x = int(left + (right - left) / 2)
player_y = int(top + (bottom - top) / 2) + 30
RW = [player_x, player_y]
detections[label] = RW
elif label == 'daojv' or label == 'gw':
player_x = int(left + (right - left) / 2)
player_y = int(top + (bottom - top) / 2) + 30
RW = [player_x, player_y]
detections[label].append(RW)
elif label == 'npc1' or label == 'npc2' or label == 'npc3' or label == 'npc4':
player_x = int(left + (right - left) / 2)
player_y = int(bottom) + 30
RW = [player_x, player_y]
detections[label] = RW
return detections
def main():
"""主函数"""
print("="*60)
print("YOLO识别测试main.py逻辑")
print("="*60)
# 从配置加载采集卡设置
active_group = config_manager.get_active_group()
if active_group is None:
print("⚠️ 没有活动的配置组,使用默认设置")
print("提示: 可以运行 python gui_config.py 设置配置")
cam_index = 0
width = 1920
height = 1080
use_model = model # 默认使用model
else:
print(f"📋 使用配置组: {active_group['name']}")
cam_index = active_group['camera_index']
width = active_group['camera_width']
height = active_group['camera_height']
use_model = model0 # 城镇中使用model0
print(f" 使用模型: model0 (best0.pt) - 用于城镇识别")
print(f" 采集卡索引: {cam_index}")
print(f" 分辨率: {width}x{height}")
print()
# 初始化采集卡
print("🔧 正在初始化采集卡...")
get_image = GetImage(
cam_index=cam_index,
width=width,
height=height
)
if get_image.cap is None:
print("❌ 采集卡初始化失败")
print("请检查:")
print("1. 采集卡是否正确连接")
print("2. 采集卡索引是否正确")
print("3. 采集卡驱动是否安装")
return
print("✅ 采集卡初始化成功")
print("\n快捷键:")
print(" 'q' 或 ESC - 退出")
print(" 'm' - 切换模型 (model/model0)")
print(" 'd' - 显示/隐藏检测信息")
print()
try:
frame_count = 0
show_detections = True # 是否显示检测信息
current_model = use_model # 当前使用的模型
current_model_name = "model0" if use_model == model0 else "model"
while True:
# 获取帧
frame_data = get_image.get_frame()
if frame_data is None:
print("⚠️ 无法获取帧,跳过...")
continue
# frame_data 是 [im_opencv_rgb, im_PIL] 格式
im_opencv_rgb, im_PIL = frame_data
if im_PIL is None:
print("⚠️ PIL图像为空跳过...")
continue
# 初始化检测结果字典
detections = {
'center': None, 'next': None,
'npc1': None, 'npc2': None, 'npc3': None, 'npc4': None,
'boss': None, 'zhaozi': None,
'daojv': [], 'gw': []
}
# 执行YOLO检测使用main.py的逻辑
detections = yolo_shibie(im_PIL, detections, current_model)
# 获取绘制好框的图像用于显示
try:
results = current_model(im_PIL)
result = results[0]
frame_with_boxes_rgb = result.plot()
frame_with_boxes_bgr = cv2.cvtColor(frame_with_boxes_rgb, cv2.COLOR_RGB2BGR)
except Exception as e:
print(f"⚠️ 绘制检测框失败: {e}")
frame_with_boxes_bgr = cv2.cvtColor(im_opencv_rgb, cv2.COLOR_RGB2BGR)
# 在图像上显示检测信息
if show_detections:
# 显示模型名称
cv2.putText(frame_with_boxes_bgr, f"Model: {current_model_name}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
# 显示检测到的目标
y_offset = 60
detected_items = []
for key, value in detections.items():
if value is not None and value != []:
if key in ['daojv', 'gw']:
detected_items.append(f"{key}: {len(value)}")
else:
detected_items.append(f"{key}: {value}")
if detected_items:
text = f"Detected: {', '.join(detected_items[:5])}" # 最多显示5个
if len(detected_items) > 5:
text += f" ... (+{len(detected_items)-5})"
cv2.putText(frame_with_boxes_bgr, text,
(10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
# 显示图像
cv2.imshow("YOLO Detection (main.py logic)", frame_with_boxes_bgr)
# 检查按键
key = cv2.waitKey(1) & 0xFF
if key in [27, ord('q'), ord('Q')]:
print("\n用户退出")
break
elif key == ord('m') or key == ord('M'):
# 切换模型
if current_model == model:
current_model = model0
current_model_name = "model0"
else:
current_model = model
current_model_name = "model"
print(f"切换模型: {current_model_name}")
elif key == ord('d') or key == ord('D'):
show_detections = not show_detections
print(f"显示检测信息: {'开启' if show_detections else '关闭'}")
frame_count += 1
if frame_count % 30 == 0: # 每30帧打印一次
print(f"📊 已处理 {frame_count} 帧 (模型: {current_model_name})")
# 打印有检测到的目标
detected_items = {k: v for k, v in detections.items() if v is not None and v != []}
if detected_items:
print(f" 检测到: {detected_items}")
except KeyboardInterrupt:
print("\n\n用户中断测试")
except Exception as e:
print(f"\n❌ 测试过程中发生错误: {e}")
import traceback
traceback.print_exc()
finally:
# 清理资源
get_image.release()
cv2.destroyAllWindows()
print("🔚 测试结束")
if __name__ == "__main__":
main()